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School Students, are the contributors of this digital magazine by submitting their articles and 

stories for publishing. 

Supporting the students in this endeavor are the STEAME STUDENTS’ mentors from the STEAME 
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Breaking the Fundamentals of Geometry. On axiomatic geometry, 

non-Euclidean geometries and non-Desarguesian planes 
by Alèxia Escudero Ribó 

 

Abstract 
When we learn geometry, there are many concepts that we have not been taught and which we 

take for granted. How many people have considered if there really exists a unique parallel to a 

straight line through a point? Surely not everyone. But the fact is that this is not always true. This 

work focuses on alternative geometries to those we are used to: the so-called non-Euclidean 

geometries. This report summarizes my recent school research project, where we analyse the 

most important properties of these geometries, based on well-known books, and we deduce their 

axioms. In the main part of our research, we expose and understand several non-Desarguesian 

planes and geometries, i.e. planes that do not satisfy the fundamental Desargues Theorem. Finally, 

we present some interesting applications of these geometries in real life problems. This way, we 

are able to observe that by minimally changing the axioms, a geometry can change radically, from 

its most basic properties to even the curvature of a certain plane. 

Keywords— geometry; axioms; Desargues Theorem; non-Desarguesian geometry; parallels; 

curvature; projective geometry; Euclid; planes “What has been affirmed without proof can also be 

denied without proof.” – Euclid 

 

1. Introduction 
When we think of the word geometry, we imagine points, lines, angles, triangles, squares or 

planes, all of them with a very clear and defined shape. If we are asked to draw a straight line that 

passes through two points, we do not stop to think about how to draw it: there is only one possible 

solution. If two of the angles of a triangle measure 40◦ and 90◦, and we are asked for the third 

angle, we answer 50◦ without thinking too much, since the angles of the triangle add up to 180◦. 

But... is all this that we take for granted, true? Well, in the geometry we are teached at school, the 

Euclidean geometry, yes. But this is not the only existing and possible geometry. There are many 

perfectly consistent geometries with unique properties that, at first, we could not even imagine. 

For example, we could say that all straight lines intersect, parallel too, and this would be true as 

long as we were talking about projective geometry or elliptical geometry. Or we could ensure that 

the angles of a triangle always add up to less than 180◦, and we would not be saying anything 

strange if we were talking about hyperbolic geometry. 

This report summarizes my recent school research project, which had the objective of 

understanding these non-Euclidean geometries, and we discuss about axiomatic geometry, 
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projective geometry and non-Euclidean geometries. Also, we explain some real life applications of 

those geometries. 

The search and analysis of consistent non-Desarguesian finite planes and consistent non-

Desarguesian geometries has been the central part of this work. Desargues’ theorem is one of the 

fundamental theorems of projective geometry, and has a trivial proof by working with the axioms 

in three dimensions. But it has a special feature: in two dimensions it can only be proved under 

some special conditions, as for example if we consider projective planes on fields. And, in fact, 

there are consistent planes that do not fulfill it, which are the planes that we study. 

 

2. Axiomatic geometry 
2.1 Historical introduction and Euclid’s postulates. In ancient times, at the time of the Greeks, 

they already clearly knew how to write a proof. Based on the knowledge of geometry they already 

had, they elaborated new theorems and new mathematical conjectures, as we still do nowadays. 

But then, Euclid, a great Greek geometer (3rd century BC), decided to compile and organize all the 

geometrical knowledge that had been obtained up to that point. Thus, he started from the most 

recently proven knowledge and theorems, and moved back to the theorems on which the others 

were based (since each theorem is proved from more basic ones). In this way, he arrived at some 

“first theorems”, or some “basic knowledge” that could not be proved. These were, in other words, 

absolute and impossible to prove truths on which all geometry was holded, what we now call 

axioms. 

In his famous work Elements, Euclid carried out an axiomatization of geometry: he defined five 

axioms, that he named postulates, as the basis of all Euclidean geometry. The five Euclid’s 

postulates are the following (see figure 1): 

 

I. Two different points determine a single straight line. 

II. Any straight line segment can be extended indefinitely. 

III. Given any point and any rectilinear segment starting from it, a circle can be drawn 

with center this point and radius this segment. 

IV. All right angles are equal to each other. 

V. If two lines intersect a third line such that the sum of the interior angles on the same 

side add up to less than two right angles, then the two lines intersect on the same 

side if extended far enough. 

 

 

 

2.2 The fifth postulate of Euclid, Hilbert’s formalization program and Gödel’s incompleteness 

theorems. We observe that, although the first four axioms of Euclid are easy to understand quickly, 
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the statement of the fifth is already a little more complicated. That is why, historically, several 

versions of it have been given. 

But the multiple versions of this last axiom was not the only reason why this one was different 

from the others: many renowned mathematicians believed that this axiom could be proved from 

the other four, which gave rise to a very large controversy surrounding this proposition. Until the 

middle of the 19th century, at least 28 different proofs of Euclid’s fifth postulate were published, 

but all of them turned out to be incorrect. 

 

 

Figure 1 The five Euclid’s postulates. (Source: Wikipedia) 

 

Finally, there were mathematicians such as Lobachevsky (1792 - 1856), Bolyai (1802 - 1860), Gauss 

(1777 - 1855) and Riemann (1826 - 1866) who, by modifying or eliminating this last postulate, 

established the existence of new geometries which were perfectly consistent: the non-Euclidean 

geometries. 

David Hilbert (1862 - 1943) was a German mathematician who initiated a formalization program, 

called the Hilbert Program, which was a solution to a fundamental crisis in mathematics in the 

1920s. Hilbert proposed to build a whole system of axioms based on all existing mathematical 

theories so far, in order to form a finite and complete set of axioms on which all mathematics 

could be supported. In other words, he wanted to declare some basic foundations of mathematics, 

so that it could be fully formalized. 

These foundations, or axioms, could not contradict each other, and all theorems should be able to 

be proved only from the axioms. In this way, one could be sure of the veracity of mathematics. 

Hilbert concentrated all his work in the two volumes of the book Grundlagen der Geometrie [7], 

where he sets out all the axioms of Euclidean geometry in two and three dimensions. 
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Despite all the effort that Hilbert and the other mathematicians involved in the project made in 

order to axiomatize mathematics and thus remove theoretical uncertainties, it ended in failure. 

Gödel proved two theorems, his two incomplete theorems, that would end part of Hilbert’s 

dreams. The theorems are the following: 

1. In any consistent formalization of mathematics that is strong enough to define the 

concept of natural numbers, a statement can be constructed that can neither be proved 

nor disproved within that system. 

2. No consistent system can be used to prove itself. 

However, these theorems do not imply that every axiomatic system is incomplete. For example, 

Euclidean geometry can be fully axiomatized, since the theorem only applies to systems that allow 

defining the natural numbers as a set: it is not enough that the system contains them. 

Furthermore, the system must be able to assert that “X is a natural number” using only its axioms 

first-order logic. Thus, real or complex numbers also have complete axiomatizations. 

These theorems had many implications in mathematics. For example, they show that if an 

axiomatic system can be shown to be consistent from its own axioms, then it is inconsistent. 

Nevertheless, Hilbert’s program could be reformulated to fit these two important theorems. 

2.3 Consistency of geometry. Not all geometries are possible, only those that are consistent. As 

explained in the book [10]: 

A problem that arises whenever a mathematical theory is developed from axioms is consistency. 

A system of axioms is said to be consistent when from these axioms it is never possible to prove 

[...] two statements such that one is contradictory to the other. 

However, it is clear that we cannot test all the theorems of a geometry to check if it is consistent. 

Thus, an arithmetic model of the geometry is constructed, and if the arithmetic is consistent, the 

geometry will be consistent as well. Finally, it must be shown that the arithmetic satisfies the 

axioms of the analyzed geometry. This arithmetic model is what we know as analytic geometry. 

3. Projective geometry 
3.1 Historical introduction. During the Renaissance in the 15th century, painters and artists 

wanted to make pictures in three dimensions, i.e., with perspective, in order to obtain more 

realistic works. These painters began to investigate how to project the images they wanted to 

represent onto a paper. 

They quickly realized that very little of the actual image was preserved: neither the distances nor 

the angles of the drawn figures were preserved. But there was still a bigger “issue”: The artists 

noticed that, in all the drawings, the lines seemed to converge at a point (or two, depending on 

the drawing) that did not exist in the actual image! 

For example, if we want to draw a train track, the parallel lines end up meeting at a point (which 

can be inside or outside the drawing) that does not exist in reality. They named it vanishing point. 

Some mathematicians of the time became increasingly interested in this phenomenon and 

created a new geometry. They called it projective geometry, since it arose from projecting reality 

onto a flat surface; that is, projecting a 3D image on a 2D plane. 
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3.2 Definitions and basic concepts. There are many concepts we should define and explain to 

understand projective geometry, but here we just state a very few basic concepts that we need 

for the following sections. 

The first important concept of projective geometry is to note that, in Euclidean geometry, parallel 

lines share one thing: direction. In projective geometry, these parallels intersect at what is called 

the point of infinity, or the ideal point. 

Definition (Cross-ratio). Let A, B, X and Y be points of a line r. The cross-ratio, or double ratio, of 

XY with respect to AB is denoted by (AB; XY) and is defined as 

 

 

From this equality we extract a very important property of the cross-ratio: it only depends on the 

four angles, i.e. the cross-ratio of four aligned points is a projective invariant. 

Definition (Projective plane). A projective plane is a set of elements called points, together with a 

family of subsets called lines, that satisfy the following conditions: 

 

• Any pair of points belong to exactly one line. 

• Any pair of lines intersect in exactly one point. 

• There exists a quadrilateral: a set of four points such that no subset of three of them are aligned. 

 

3.3 Desargues’ theorem. Desargues’ theorem is a fundamental theorem of projective geometry. 

Curiously, it can only be proved in 3D. It is impossible to prove it only with the axioms of the 2D 

projective geometry, while its 3D proof is very simple. Therefore, the theorem must be considered 

one of the axioms of projective geometry in two dimensions if we work on Desarguesian planes 

(planes that satisfy the Desargues’ theorem). The theorem states the following: 

Theorem (Desargues’). In the projective plane two triangles are projective from a point if and only 

if they are projective from a line. 
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Figure 2 Representation of Desargues’ theorem. (Source: Miscelánea Matemática) 

 

This theorem holds whenever the two triangles lie in different planes. But as we see in the 

following sections, this is not always the case when the two triangles are coplanar. 

3.4 Hilbert’s non-Desarguesian geometry. Hilbert was one of the first mathematicians to try to 

prove the independence of Desargues’ theorem with respect to the five groups of axioms. Thus, 

he managed to create a geometry that did not fulfill Desargues’ theorem. 

In this geometry, explained in [3], Hilbert considers the ellipse of semiaxes 1 and 1/2 centered at 

the origin, and a system of circles intersecting the x axis at the point F = (3/2,0) and only 

intersecting the ellipse in two points of the real plane. As points of the created geometry, consider 

the points of the Euclidean plane, and as lines, the lines of the Euclidean plane, except those 

intersecting the ellipse in two different points P and Q. On these lines, we construct the circle that 

passes through the points P, Q and F, and we replace the segment PQ of the line by the arc PQ of 

this circle. The result can be seen in figure 3(a). 

To show that this is a non-Desarguesian geometry, we focus on three lines: the x axis, the y axis 

and the line through the origin that passes through the point x = (3/5,2/5). We then look at two 

triangles with the vertices on these three lines, and that are not inside the ellipse. These two 

triangles are projective from a line r but not from a point (the three mentioned lines do not all 

intersect at the same point). This can be seen in figure 3(b). 

 

 

(a) Representation of non-Desarguesian Hilbert geometry 
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(b) This is a non-Desarguesian geometry 

Figure 3 Hilbert’s non-Desarguesian geometry. 

 

3.5 Free planes. Free planes are the simplest and easiest to understand examples of non-

Desarguesian planes. 

As exposed in [1], we start with a configuration of points and lines that we call X0, consisting of 

four points A, B, C and D, and four lines AC, CB, BD and DA. It is easy to see that X0 is not a 

projective plane because it does not meet the necessary conditions exposed in its definition (see 

section 3.2): for example, the points A and B do not belong to the same line. Then, given a 

configuration Xn (n ∈ N), we construct Xn+1 ⊃ Xn as follows: 

• The points of Xn+1 are the points of Xn and, furthermore, for each pair of lines r and s of Xn that 

do not intersect, we add a new point only incident with the lines r and s. 

• The lines of Xn+1 are those of Xn and, furthermore, for each pair of points A and B not aligned in 

Xn, we add a line only incident with A and B. 

Finally, we define the plane as:  

 

from a point (the three mentioned lines do not all intersect at the same point). This can be seen 

in figure 3(b). 

In figure 4, we observe the construction of this plane X up to X4. 

Proposition.  X is a non-Desarguesian projective plane. 
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(a) X0 

 

 

(b) X1 

 

 

(c) X2 

 

 

(d) X3 
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(e) X4 

Figure 4   Formation of a free plane up to X4 

Proof.  Let us look at the triangles △ ABC and △ A′, B′, C′.  They are projective from the point D. 

In order for them to also be projective from a straight line, the points P, Q and R would have to 

be aligned. 

But since these three points are not aligned in X4, they will not be aligned in X either. Therefore, 

this plane does not satisfy Desargues’ theorem. 

3.6 Moulton plane. Moulton’s plane was presented in 1902 by Forest Ray Moulton (1872 - 1952) 

in his work “A simple nonDesarguesian geometry”. Its purpose was to find a simpler non 

Desarguesian geometry than Hilbert’s. 

The points that constitute the Moulton plane are the points of the real plane R 2, but with a point 

at the infinity for each family of parallel lines.  

Lines with negative slope, horizontal or vertical, are ordinary lines, but those with slope 𝑘 > 0 

become lines with slope 𝑘/2 when crossing the 𝑥 axis, as we see in figure 5. In this way, for 

example, a line in the Moulton plane through the points (0, −1) and (2,1/2) crosses the 𝑥 axis at 

the point (1, 0). 

Moulton’s plane is a non-Desarguesian plane as can be clearly seen in different examples. We 

show two different configurations where we easily see that the theorem is not fulfilled. In the 

example of figure 6(a), the two triangles are projective from a point but not from a line. In the 

other example of figure 6(b) the two triangles are projective from a line but not from of a point.  

 

 

Figure 5   Lines of the Moulton plane. (Source: [11]) 
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(a) Two triangles projective from the infinity point but not projective from a straight line. (Source: [11]) 

 

(b) Two triangles projective from the line at infinity but not from a point. (Source: [3]) 

Figure 6   The Moulton plane, a non-Desarguesian plane. 

 

3.7 Veblen-Wedderburn plane. The Veblen-Wedderburn plane is built on the abelian group A = 

Z/3Z × Z/3Z consisting of  nine  elements:     0, 1, −1, i, −i, 1 + i, 1 − i, −1  + i, −1  − i, which  multiply  

as  shown in table  1.    We can observe that the distributive property on the right is not satisfied. 

For example, (−1 + i)i = 1 + i ≠ −1 − i = i (−1 + i). Therefore, A is not a ring, but a near-field. 

The Veblen-Wedderburn plane is the projective plane on this abelian group A: P2 (A), which is not 

Desarguesian. The following proof is from [1]. 

Proposition. The Veblen-Weddeburn plane is a non-Desarguesian plane. 
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Proof.  Consider (in the affine plane A2) two triangles △ ABC and △ A′ B′ C′, with vertices A = (0, 

i), B = (1, i), C  =  (i, 1),  A′  = (−1 − i, −1 − i), B′ = (−i, −1 − i) and C′= (1 − i, i). 

Then the line AA′ is y = xi + i, the line BB′ is y = −xi − i and the line CC′ is y = x (−1+i) −1+i. The 

three straight lines pass through the point P = (−1, 0), therefore the two triangles are perspective 

from this point P. 

In addition, we can calculate the equations of the lines AB:  y = i, and A′ B′: y = −1 − i, deducing 

that the two lines AB and A′ B′ are parallel. Calculating the equations of the lines AC: y = x (−1 −i) 

+i and A′C′: y = x (−1 − i) − i, we deduce that these two lines AC and A′C′ are also parallel. But if 

we calculate the equations of the lines BC: y = −x + 1 + i and B′C′: y = xi + 1 − i, we note that these 

two are not parallel! Consequently, the two triangles are not projective from a straight line and, 

therefore, the Veblen-Wedderburn plane is a non-Desarguesian plane. 

3.8 Cayley plane. The Cayley plane is the projective plane P2 (O) built on the octonions (O). In the 

book [1] we find several very interesting and important properties of it, but here we focus only on 

proving that it is a non-Desarguesian plane, and for that we proceed as in section 3.7, showing a 

counterexample. 

First, we need to shortly introduce what the octonions are: octonions are a generalization of 

complex numbers in eight dimensions. They are a type of hypercomplex numbers and can be 

obtained from the multiplications of quaternions (O≅ H×H = H2). 

An octonion is a real linear combination of eight units 𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7, where 𝑒0 is 

usually identified by the number 1. Thus, an octonion 𝑂 can be written as: 

𝑂 = 𝑥0𝑒0 + 𝑥1𝑒1 + 𝑥2𝑒2 + 𝑥3𝑒3 + 𝑥4𝑒4 + 𝑥5𝑒5 + 𝑥6𝑒6 + 𝑥7𝑒7, 

where 𝑥0, ..., 𝑥7 are real coefficients, or as an orthogonal sum of two quaternions ℎ1 = 𝑎1+𝑏1𝑖+𝑐1 

𝑗 +𝑑1𝑘 and ℎ2 = 𝑎2+𝑏2𝑖+𝑐2 𝑗 +𝑑2𝑘:  

𝑂 = ℎ1 + 𝑣ℎ2 = 𝑎1 + 𝑏1𝑖 + 𝑐1 𝑗 + 𝑑1𝑘 + 𝑣(𝑎2 + 𝑏2𝑖 + 𝑐2 𝑗 + 𝑑2𝑘), 

where 𝑣 B (0, 1) ∈ O. We show the multiplication of octonions in table 2. The following proof is 

from [1]. 

Proposition.  The Cayley plane is a non-Desarguesian plane. 
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Proof.  Consider (in the affine plane) two triangles △ABC and △ A’B’C’, with vertices A  =  (0, 0),  

B  =  (u, 0),  C  =   (1, u), A′ = (0, j ), B′ =(u, j) and C′ = (1, i + j + u). 

Then the line AA′ is x = 0, the line BB′ is x = u, and the line CC′ is x = 1. Therefore, since the lines 

AA′, BB′ and CC′  are parallel, the two triangles are perspective with respect to a point at infinity. 

In addition, we can also calculate the equations of the lines AB: y = 0, A′B′: y = j. From here we 

deduce that the two lines are parallel. We also find the equations of the lines AC: y = xu, and 

A′C′: y = x (i + u) + j , which intersect in the point (−k, uk), where k = i j .  Finally, the line BC is 

 

 
 

, and the line B’C’  

 

 

 

  

, where u = (1 + v) (i + v). 

Therefore, the two triangles should be in perspective with respect to the line y = vk, which 

intersects the line BC at the point (−k + v(1 − k), vk).  But this point does not belong to the line  

B′C′. Consequently, the two triangles are not perspective from a straight line and, therefore, do 

not satisfy Desargues theorem. 

3.9 Applications. In mathematics, projective geometry is used in many fields such as topology, 

group theory, etc. 

However, it is also used in many other disciplines, especially in IT, computing and robotics. Next, 

we present some examples of work that could not be developed without projective geometry. 

 

Computer vision and 3D reconstruction. Projective geometry has great applications in the field of 

computer vision and computer graphics. For example, it is used in stereovision, which is the 3D 

reconstruction from two 2D images. 

In our work [5], we study the geometric model of a camera, and how can we explicitly model the 

system using projective geometry, as exposed in [6]. 
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The steps for 3D reconstruction are: from two images of the same object taken from two different 

places, we do a segmentation or extraction of all the lines and geometric elements that want to 

be reconstructed from the images. Then a matching between the corresponding pixels in the two 

images is done, using a collineation of the projective planes and the fundamental theorem of 

projective geometry. Then the equations of the projection of each 3D point to the two 

corresponding points on the two 2D images are used to write a system of equations using 

homogeneous coordinates or projective coordinates. This system of equations is overdetermined 

(4 × 3) and is solved using numerical methods, specifically using the least squares method, and 

thus we obtain the 3D coordinates of each point that we want to reconstruct. 

 

 

Figure 7   Steps for the 3D reconstruction 3D. (Source: [2]) 

 

3D reconstruction opens an immense range of applications, for example in the fields of 

medicine, architecture and virtual reality. 

Measurements in photographs. In [8], the double ratio and its properties are used to measure 

distances based on the proportions that we can extract from photographs. 

In [9], projective geometry is used to calculate the proportions of the rectangle that forms the 

ground floor of a building from an image of it (the image in figure 8). 

 

 

Figure 8   Calculating the proportions of the ground floor (Source: [9]) 
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4. Hyperbolic geometry  
Hyperbolic geometry is a non-Euclidean geometry, obtained by denying Euclid’s fifth postulate. 

Instead, we have the so-called Lobachevsky’s axiom, which states the following: Axiom V′ 

(Lobachevsky’s Axiom). There exists a line r and a point P not belonging to r such that at least two 

lines pass through P without intersecting r. 

Hyperbolic geometry arose when mathematicians tried to construct a totally consistent geometry 

that did not fulfill Euclid’s fifth postulate, in order to prove that it was independent of the other 

four and that it could not be proved from those. After several attempts, finally, in the 1820s, two 

distinguished mathematicians, János Bolyai and Nikolai Ivanovich Lobachevski, individually 

succeeded in creating a completely consistent geometry denying Euclid’s fifth postulate: the 

hyperbolic geometry. 

4.1 Properties of hyperbolic geometry. Hyperbolic geometry is a geometry with negative 

curvature. This means that if we take any point and make two cuts perpendicular to each other in 

the plane through this point, the two cuts have curvatures of opposite signs, as we see in figure 9. 

The most relevant characteristics of this geometry are a consequence of this negative curvature. 

Thus, in hyperbolic geometry, we have infinite lines parallel to a given line that have a common 

point, as defined by Lobachevsky’s axiom. Another important feature is the fact that, in an 

hyperbolic plane, the angles of a triangle always add up to less than 180◦.  This is represented in 

figure 10. 

4.2 Applications. Hyperbolic planes and spaces have many applications in various fields of physics, 

as well as in chemistry and biology. Albert Einstein, for example, used the negative curvature of 

hyperbolic planes to ground his general theory of relativity. We can find hyperbolic geometry even 

in works of art and architecture. In addition, hyperbolic geometry is present in nature in perhaps 

the most unexpected way: we find hyperbolic figures both in the shape of mountains and in coral 

reefs, and even in lettuce leaves. It is thought that this may be due to the fact that hyperbolic 

planes allow more surface area in less volume, which helps the plants to get more nutrients. 

 

 

Figure 9 A point with negative curvature. (Source: Wikipedia) 
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Figure 10 A triangle in hyperbolic geometry. (Source: Wikipedia) 

 

5. Elliptic geometry 
Elliptic geometry is another non-Euclidean geometry. But in this case, the axiom that replaces 

Euclid’s fifth postulate is the following: 

Axiom V′. Given a point P exterior to a line r, there is no line through P parallel to r. 

5.1 Properties of elliptic geometry. Elliptic geometry is a geometry with positive curvature. This 

means that if we take any point and make two cuts perpendicular to each other in the plane 

through this point, the two cuts have curvatures of same sign. 

In this case, the most relevant characteristics of this geometry are also a consequence of the 

positive curvature. Thus, in elliptic geometry, every pair of lines intersects at one point (if we talk 

about single elliptic geometry) or at two points (if we talk about double elliptic geometry as, for 

example, spherical geometry). Another important feature is the fact that, in an elliptic plane, the 

angles of a triangle always add up to more than 180◦. We represent this in figure 11. 

5.2 Applications. Elliptic geometry and, in particular, spherical geometry, has a lot of applications, 

as we live in a spherical planet. Thus, elliptic geometry is used to analyze distances in Earth. For 

example, we can easily show that the shortest distance between two points in Earth is not a 

straight line, but a spherical line, as we observe in figure 12. In our work [5] we have a more 

detailed explanation of this and a computation of the shortest distance between two points of the 

earth, using spherical coordinates and the Haversine formula. 
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Figure 11   Elliptic triangle. (Source: Wikipedia) 

 

 

Figure 12   Shortest distance between BCN and NY. 

 

6. Conclusions 
In our original work [5] we present the axioms for two dimensions of  the  four  different  exposed  

geometries  (the  Euclidean,  the projective, the hyperbolic and the elliptic), we compare these 

axioms and we draw some interesting conclusions about axiomatic geometry. Analyzing the 

axioms of these geometries, we observed that the fifth postulate of Euclid determines the 

curvature of a given plane. We were able to deduce that all these four geometries were, in fact, 

“cases” of projective geometry, because their axiomatic systems could be transformed into the 

axiomatic system of projective geometry just by adding some axioms. 

In conclusion, we have understood how an axiomatic system is created, and we have exposed 

different geometries that are not so well known. In addition, we have presented five 

counterexamples to Desargues’ theorem. Finally, we have also investigated some interesting 

applications of these geometries in several fields outside mathematics. 
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What is the Pell’s equation? 
by Fedir Fedorov 

Pell’s equation is a Diophantine equation of the form x2 − dy2 = 1 where d is a given positive square-

free integer. Square-free means that d is not divisible by any square number other than 1. With 

this setup, you try to find solutions (x, y) for this equation, where x and y are non-negative integers. 

Why the restrictions with the number d? Well, if d was a square, for example d = k2 for an integer 

k, then the equation would turn to: 

x2 − k2y2 = 1 

⇔ (x − ky)(x + ky) = 1 

 

In this case, we are able to factorize the left side into the product of two integers, which is not 

interesting (because each integer should have the value of either 1 or -1). 

Another weird restriction is the square-free part. If d was to contain another square number, so 

for example d = a · k2, where a is a square-free integer, and k is an integer bigger than 1. Then we 

could rewrite our Pell’s equation to: 

 

x2 − ak2y2 = 1 

⇔ x2 − a(ky)2 = 1 

 

As you can see, this would turn into a special case of another Pell’s equation, where d (in this 

example a) is square-free. So it suffices to consider only square- free integers d. 

 

Some background knowledge 

Firstly, let us introduce the algebraic structure Z [√𝑑] which is defined as follows: 

Z [√𝑑]: = {a + b · √𝑑|a, b ∈ Z} 
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Here, we will consider these structures only for square-free integers d as well. The great thing is 

that (for square-free integers d), you can easily show that the described structure satisfies all the 

axioms of a commutative ring regarding the ’normal’ addition and multiplication (this fact is left 

as an exercise for the reader). 

Now you will probably think “Great, but what does this have to do with our Pell’s equation?”. And 

this is indeed a very good question. Considering this ring Z[√𝑑], we can factor the Pell’s equation: 

x2 − dy2 = 1 ⇔ (x − y √𝑑)(x + y√𝑑) = 1 

Now we can see that, searching for solutions of the Pell’s equation with a given d is equivalent to 

searching for elements of our ring Z[√d] with a multiplicative inverse (called ’units’). 

 

From one solution to infinitely many 
If you look closely at Pell’s equation, you might already guess one solution (x, y) = (1, 0). This is 

called the trivial solution and it is a solution of a Pell’s equation of every kind (regardless of the 

value of d). But this solution is too easy and because of that, not very interesting in regard to other 

solutions. 

Suppose that you found the minimal solution to a specific Pell’s equation apart from the trivial 

solution (1, 0). We call this minimal pair (x1, y1) the fundamental solution of the equation. Now, it 

is possible to get infinitely many solutions to Pell’s equation applying the following formula: 

xn + yn√𝑑 = (x1 + y1√𝑑)n 

where xn, yn are also integers, and n is an arbitrary positive integer. By applying the binomial 

theorem, you then get: 

xn − yn√𝑑 = (x1 − y1√𝑑)n 

Now, the new pair (xn, yn) is also a solution to Pell’s equation: 

 

Thus, now we have shown, that if we have one solution of Pell’s equation, we can get infinitely 

many by applying the formula above.  The formula can also be illustrated in a recursive way: 
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It follows: 

xn = x1xn−1 + dy1yn−1  

yn = x1yn−1 + xn−1y1 

  

Now we have shown that with this explicit or recursive formula, you are able to get infinitely many 

solutions of Pell’s equation, assuming you already found one. In the following, we will prove that 

if (x1, y1) is indeed the smallest (fundamental) solution, then every other solution of Pell’s equation 

can be illustrated with the formula derived above. 

Suppose that we found another solution (x′, y′) of Pell’s equation satisfying x′ + y′√𝑑 ≠ (x1 + 

y1√𝑑)n  for every positive integer n.  Then there exists a positive integer k > 0 satisfying: 

xk + yk √𝑑 < x′ + y′√𝑑 < xk+1 + yk+1√𝑑 = (xk + yk √𝑑)(x1 + y1√𝑑) 

Now, we multiply the inequality with (xk −yk √d), knowing that (xk −yk √𝑑)(xk + yk √𝑑) = x2 − dy2 = 1 

because (xk, yk) is a solution of Pell’s equation: 

 

It is left for the reader to prove that, if (x′, y′) and (xk, yk ) are solutions to Pell’s equation, then (x′xk 

− dy′yk, y′xk − x′yk ) is also a solution. Now we have found a new solution of Pell’s equation, which 

is greater than the trivial solution (1, 0) but smaller than the fundamental solution (x1, y1). This is 

a contradiction to the definition of the fundamental solution. 

Now we have proven that there cannot exist another solution of Pell’s equation, and that every 

solution has the following form: 

xn + yn√𝑑 = (x1 + y1√𝑑)n 

where n is a positive integer and (x1, y1) the fundamental solution. 

 

Finding the fundamental solution 
The fundamental solution can be found with the continued fraction for √d. You have to look at 

the sequence of convergents to the continued fraction hi/ki and at some point, you will reach a 
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positive integer i which satisfies hi = x1, ki = y1 - the fundamental solution to Pell’s equation x2 − 

dy2 = 1. 

This follows from the fact that the fraction xn  of the solutions to Pell’s equation converges 

towards √𝑑. This fact is also left to prove for the reader, the approach is to substitute: 

 

Now we know a way of finding the fundamental solution, the only problem is that it may take a 

very long time, for example the fundamental solution for d = 61 is (x1, y1) = (1766319049, 

226153980). 

 

One example of a specific Pell’s equation 
Let us look at Pell’s equation for d = 5: 

x2 − 5y2 = 1 

First, we try to find the fundamental solution by looking at the continued fraction of √5: 

 

Now we look at the convergences of the continued fraction. The first is 2. We substitute this into 

our Pell’s equation to see whether this is the desired fundamental solution: 

22 − 5 · 12 = 4 − 5 = −1 

This is not our desired solution, so we look at the second fraction, which is 9: 

92 − 5 · 42 = 81 − 80 = 1 

The result is 1, so we have found our fundamental solution (x1, y1) = (9, 4). The other solutions 

can be derived using for example the recursive formula for the solutions of Pell’s equation: 

x2 = x1x1 + dy1y1 = 9 · 9 + 5 · 4 · 4 = 81 + 80 = 161 

y2 = x1y1 + x1y1 = 9 · 4 + 9 · 4 = 36 + 36 = 72 

And we see that (161, 72) is indeed a solution of Pell’s equation for d = 5: 1612 − 5 · 722 = 25921 

− 25920 = 1 

With this recursive formula, we are able to find infinitely many solutions to this specific example 

of Pell’s equation. 
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Conclusion 
I hope that this article was in any way helpful for you to get an understanding of Pell’s equation. 
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